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Abstract

Knowing how small violation individuals would accept against stochastic dominance

rules is a prerequisite for applying almost stochastic dominance criteria. Different from

previous results obtained by experiments, this paper estimates acceptable violation against

stochastic dominance rules with 940,904 observations of real data on a deductible choice of

automobile theft insurance. We find that for all policyholders in the sample who optimally

chose a low deductible, the upper bound estimate of acceptable violation ratio is 8.198e−08

which is close to zero. On the other hand, considering most decision makers, such as 99%

(95%) of the policyholders in the sample, who optimally chose the low deductible, the

upper bound estimate of the acceptable violation ratio is 0.0399 (0.0727). Our results

provide reference values of the acceptable violation ratio and justification for applying

almost stochastic dominance rules.

JEL classification: D81, G22

Keywords: almost stochastic dominance; generalized almost second-degree stochastic

dominance; preference parameter; automobile theft insurance; deductible
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1 Introduction

Stochastic dominance (SD) rules have become main tools for ranking distributions since Roth-

schild and Stiglitz (1970) proposed a definition of an increase in risk in terms of a change in

distribution. Based on SD rules, the literature analyzed comparative statics of an increase in

risk and examined efficiency in optimization.1 However, there exists cases where people appar-

ently prefer one distribution to the other, which cannot be revealed by SD rules. For example,

when facing two prospects–one prospect yields -1 dollar with probability 0.01 and one million

with probability 0.99, and the other yields zero dollar for certainty, most people prefer the

former to the latter. However, SD rules fail to rank these two prospects.

A new criterion for ranking distributions, almost stochastic dominance (ASD), is accordingly

proposed by Leshno and Levy (2002) to solve the above paradox. ASD rule can shows a

dominance between two distributions with crosses for each other as long as the area violation

under SD rules is small enough to be accepted by most (but not all) decision makers. The

preferences not considered by ASD rule are believed to be extreme and economically unrelated.

Since ASD rule was proposed to overcome the difficulty in SD rules, more and more related

theories and applications have been being developed. Some researchers devoted to improve

Leshno and Levy’s (2002) version by proposing alternative and more general definitions (e.g.,

Lizyayev and Ruszczyński, 2012; Tzeng et al., 2013; Denuit et al., 2014b; Tsetlin et al., 2015).2

Others applied the concept of ASD to develop other decision rules in almost version such as

almost marginal conditional stochastic dominance (Denuit et al., 2014a) and almost expectation

(Denuit et al., 2014c). In the meantime, ASD rule has also been employed to empirical studies.

Some papers found that ASD rule can explain common practice in investments unanswered by

SD rules (e.g., Bali et al., 2009; Levy, 2009; Bali et al., 2013)3. Moreover, researchers showed

that investment efficient sets can be further improved by ASD rule (e.g., Levy, 2012).

1E.g., Levy (1992, 1998) provided a detail survey regarding SD rules.
2Lizyayev and Ruszczyński (2012) proposed another definition of ASD rule which has an advantage of easily

implementing computation. Tzeng et al. (2013) provided another version of almost second-degree stochastic
dominance (ASSD) which fixes problems of Leshno and Levy’s (2002) version, and they also extended it to
higher orders. ASD rule is even extended to the bivariate case in which joint distribution functions of two
random variables and the utility function with two attributes are considered (Denuit et al., 2014b). Recently,
Tsetlin et al. (2015) developed a general definition of ASD rule, called generalized almost stochastic dominance
(GASD), which includes other versions established by previous papers as special cases.

3Bali et al. (2009) found that ASD rule can explain investors’ preferences for stocks than bonds in long-term
investment periods while Levy (2009) obtained an opposite conclusion. Bali et al. (2013) empirically showed
that some hedge funds dominate stocks and bonds by ASD.
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Though relevant studies of ASD have gained popularity, the question of how small violation

against SD rules is allowed by most decision makers has not been well explored. Knowing the

value of the acceptable violation ratio against SD rules, which is a parameter that defines a set

of most decision makers’ choice preferences, is a prerequisite for applying ASD rules. Given

the value of the acceptable violation ratio, ASD rules can then be used to determine whether

one distribution is preferred to the other by most decision makers. So far, all we know about

its value is only based on the results obtained by experiments (e.g., Levy et al., 2010; Huang

et al., 2015). However, in reality, whether the acceptable violation ratio would have a value

like the experimental results has not been verified.

The purpose of this paper is to specifically estimate the acceptable violation ratio, ε1, in

generalized almost second-degree stochastic dominance (ε1,0)-GASSD (Tsetlin et al., 2015)

with real data. We use data on a deductible choice of automobile theft insurance contract to

estimate ε1. It is attractive to estimate ε1 by observing the deductible choice. Whether to

purchase insurance and which deductible levels would choose when purchasing insurance are

decisions commonly faced in our daily lives. Insurance data, especially automobile insurance

data, has the advantage of easy availability and large quantity. Our data is provided by a

leading non-life insurance company in Taiwan. It covers automobile theft insurance contracts

sold during year 2002 to year 2008. Our sample for estimation comprises rich observations

(940,904 observations).

We estimate ε1 by the percentage of policyholders in the sample who made an optimal4

decision on choosing a 10%-deductible contract, i.e., they should purchase and actually pur-

chased 10%-deductible contract based on (ε1,0)-GASSD rule. If a policyholder chose the 10%

deductible optimally, then he/she has a violation ratio for 20%-deductible contract to dominate

10%-deductible contract via (ε1,0)-GASSD larger than ε1. Otherwise, he/she should choose

the 20% deductible. Therefore, for each policyholder in the sample, we first estimate the above

violation ratio whose estimate is denoted by R̂. We then use the minimum of R̂ in the whole

sample as an estimate of ε1 by assuming all the policyholders in the sample purchased the 10%-

deductible contract optimally, denoted by R̂(100%). Based on (ε1,0)-GASSD rule, R̂(100%)

could be an upper bound estimate for ε1. Note that the minimum of R̂ in the whole sample

4In this paper, we term a decision as an optimal one if a decision maker made the decision in accordance
with (ε1,0)-GASSD rule.
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decreases as the size of the sample increases. The estimation of ε1 for the whole sample, espe-

cially for a large whole sample, is like searching for the acceptable violation ratio against SD

rules for all risk averters. Thus, for our large sample, we expect that the estimate of ε1 would

be close to zero.

Indeed, ASD rules are derived for most, but not all, risk averters. As pointed out by

Leshno and Levy (2002), some risk averters with pathological preferences could be economically

irrelevant. Thus, we report the quantiles rather than the minimum of R̂ for the whole sample

to exclude policyholders with extreme preferences. We propose a quantile-based estimation

by allowing only m%(m < 100) of the policyholders in the sample made an optimal decision

and find the minimal R̂ among the m% of the policyholders (i.e., the (100-m)th percentile of

R̂) as an upper bound estimate of ε1, denoted by R̂(m%). In addition, we also report a 95%

confidence interval estimate for each R̂(m%) obtained by bootstrap.

Our results show that when assuming that all the policyholders in the sample made an

optimal decision on purchasing the 10%-deductible contract based on (ε1,0)-GASSD rule, the

upper bound estimate of ε1 is 8.198e−08 with a 95% confidence interval estimate of [2.29e−16,

0.0026]. Our findings support the rationality that the acceptable violation ratio against SD

rules for a large sample of risk averters would be close to zero. Compared with the estimates

of ε1 for all decision makers reported by previous works, our estimates obtained by real data

with a large sample (940,904 observations) are much smaller than Levy et al.’s (2010) estimate

of 0.059 obtained by lab experiments with a small sample (180 subjects).

On the other hand, our estimates of ε1 for most risk averters are as follows. When assuming

that 99% (95%) of the policyholders in the sample purchased the 10%-deductible contract

optimally, the upper bound estimate of ε1 is 0.0399 (0.0727) with a 95% confidence interval

estimate of [0.0298, 0.0463] ([0.0635, 0.0791]). Our upper bound estimate of 0.0554 (with a 95%

confidence interval of [0.0456, 0.0621]) for 97.5% of the policyholders in the sample purchased

optimally is closest and slightly smaller than Levy et al.’s (2010) estimate of 0.059 for all

subjects in the sample. Our quantile-based estimates therefore provide reasonable reference

values of ε1 for employing ASD rules.

To cross-check with the literature on estimating risk aversion indices (e.g., Gertner, 1993;

Metrick, 1995; Holt and Laury, 2002; Bliss and Panigirtzoglou, 2004; Chetty, 2006; Cohen and
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Einav, 2007; Andersen et al., 2008; Bollerslev et al., 2011; Bucciol and Miniaci, 2011; Brenner,

2015), by a derived relation between ε1 and absolute risk aversion (ARA) coefficient, we further

obtain upper bound estimates of the ARA coefficient on basis of our upper bound estimates of

ε1. Take the policyholder with an insured car valued at the mean NT$380,070 of the sample as

an example. We find that when all the 10%-deductible decisions of the sample are optimal, the

upper bound estimate of the ARA coefficient for such the policyholder is 0.0002 with a 95%

confidence interval estimate of [7.827e−05, 0.0005]. Compared with Cohen and Einav’s (2007)

ARA coefficient estimates also obtained by the data of the deductible choices in automobile

insurance, our estimate is smaller than their mean estimate of 0.0067, but it is very close to

and slightly smaller than their 75th percentile estimate of 0.00029.5

On the other hand, we find that when 99% (97.5% and 95%, respectively) of the 10%-

deductible decisions of the sample are optimal, the upper bound estimate of the ARA coefficient

at the mean insured car value is 4.184e−05 (3.731e−05 and 3.349e−05, respectively) with a 95%

confidence interval estimate of [3.980e−05, 4.582e−05] ([3.572e−05, 4.001e−05] and [3.229e−05,

3.540e−05], respectively). All the above our estimates are smaller than Cohen and Einav’s

(2007) mean and 75th percentile estimates, but ours are close to and rather larger than their

median estimate of 2.6e−05. Accordingly, our estimates of ARA coefficient obtained via our

estimates of ε1 are comparable to previous results.

Our paper contributes the literature on ASD in several aspects. As far as we know, this

is the first paper to provide the information of the acceptable violation ratio against SD rules

in (ε1,0)-GASSD (also ε1-AFSD) with real data, which is different from previous papers that

estimated it by experimental data. We propose a quantile-based estimation which sheds light on

the property of ASD and could be implemented with a large sample. Therefore, our estimates of

ε1 are closer to reality and could provide reference values of ε1 for relevant studies. Furthermore,

this is also the first paper link risk aversion intensity to ASD rules. Our ARA estimates directly

linked to the acceptable violation ratio against SD rules are reasonable and comparable to the

literature.

The remainders are as follows. Section 2 reviews (ε1,0)-GASSD rule. Section 3 applies

(ε1,0)-GASSD to the decision of insurance deductibles and develops a condition for empirical

5We mainly compare our results with those in Cohen and Einav (2007) because both the two papers employed
the data on insurance deductibles to obtain the results.
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estimation. We propose a quantile-based estimation in Section 4. Section 5 describes our data.

The results are presented in Section 6. Finally, Section 7 concludes the paper.

2 (ε1,0)-GASSD

We review (ε1,0)-GASSD (Tsetlin et al., 2015) in this section. Specifically, the definition of

(ε1, 0)-GASSD is as follows. First define utility function:

U 2(ε1, 0) =

{
u′(x) > 0, u′′(x) ≤ 0, u′(x) ≤ inf {u′(x)}

(
1

ε1
− 1

)
∀x, ε1 ∈

(
0,

1

2

)}
.

Denote F (2)(x) =
∫ x

x
F (t) dt and G(2)(x) =

∫ x

x
G(t) dt. Tsetlin et al. (2015) defined (ε1,

0)-GASSD as follows:

Definition 1 For 0 < ε1 < 1
2
, F dominates G by (ε1, 0)-GASSD if and only if F (2)(x̄) −

G(2)(x̄) ≤ 0 and

max
x∈[x,x̄]

[
F (2)(x)−G(2)(x)

]
≤

ε1
1− 2ε1

[
G(2)(x̄)− F (2)(x̄)

]
. (1)

Note that F (2)(x̄) ≤ G(2)(x̄) is equivalent to EF (x) ≥ EG(x), where EF (x) and EG(x) denote the

mean under F and G, respectively. Definition 1 states that F dominates G by (ε1, 0)-GASSD

means that the mean under F is larger than or equal to the mean under G and the maximum

difference between F (2) and G(2) which violates SSD rule does not exceed the difference between

F ’s mean and G’s mean weighted by ε1
1− 2ε1

, where ε1 ∈ (0, 12).

Tsetlin et al. (2015) then showed (ε1,0)-GASSD rule as the following theorem:

Theorem 1 F dominates G by (ε1, 0)-GASSD if and only if for all u ∈ U 2(ε1, 0), EF (u) ≥

EG(u).

Since we consider a decision of insurance deductibles, (ε1,0)-GASSD rule (Tsetlin et al., 2015)

under which decision makers are assumed to be risk averse, is adequate for being the studied

decision rule.6

6Note that if F (x) crosses G(x) only once and from the bottom, then (ε1,0)-GASSD rule happens to be
ε1-almost first-degree stochastic dominance (ε1-AFSD) rule proposed by Leshno and Levy (2002).
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3 A Choice of Insurance Deductibles

In this section, we apply (ε1,0)-GASSD rule to the choice of deductible level when purchasing

insurance and derive a condition for empirically estimation of ε1. Note that (ε1, 0)-GASSD

rule assumes that decision makers are risk averse in accordance with the choice of insurance

deductibles we discuss in this paper.

The settings are as follows. A risk-averse individual with utility function u ∈ U2(ε1, 0) has

an initial wealth w and a potential loss L with a probability of occurrence π. The individual

would like to purchase insurance to transfer his/her risk to an insurer. There are two deductible

levels: 10% and 20%. In other words, the individual faces a menu with premiums and coverage

amounts provided by the insurer: (P 10%Q10%, Q10%) and (P 20%Q20%, Q20%), where P k denotes

a premium rate for per unit of coverage amount and Qk denotes a coverage amount in the 10%-

or 20%-deductible contract, k = 10% or 20%. Note that under the 10%-deductible contract,

the individual receives a high coverage (Q10% = 0.9L) while under the 20%-deductible contract,

the individual receives a low coverage (Q20% = 0.8L).

The individual has to decide which deductible level to purchase. He/She makes a choice

by ranking the cumulative distributions of final wealth x under the 10%-deductible contract

(denoted by B(x)10%) and the 20%-deductible contract (denoted by B(x)20%) based on (ε1,

0)-GASSD rule. If choosing the 10%-deductible contract, the individual has probability π to

obtain w − L + (1 − P 10%)Q10% and probability 1 − π to obtain w − P 10%Q10%. If choosing

the 20%-deductible contract, he/she has probability π to obtain w − L+ (1− P 20%)Q20% and

probability 1 − π to obtain w − P 20%Q20%. Under the above settings, the relation between

B(x)10% and B(x)20% is presented in Figure 1.

[Insert Figure 1 here]

Figure 1 shows that the deductible choice is a single-cross case with B(x)10% lying below

B(x)20% before the cross. Denote C the area where B(x)20% is higher than B(x)10% and D

the area where B(x)10% is higher than B(x)20%. Further, let B(2)(x)20% and B(2)(x)10% denote
∫ x

x
B(t)20% dt and

∫ x

x
B(t)10% dt, respectively.

Since B(x)20% crosses B(x)10% only once, from Figure 1, max
[
B(2)(x)20% − B(2)(x)10%

]
= C

and B(2)(x̄)10% − B(2)(x̄)20% = D − C. Thus, according to Definition 1, B(x)20% dominates
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B(x)10% by (ε1, 0)-GASSD for all u ∈ U 2(ε1, 0) if and only if

C ≤
ε1

1− 2ε1
(D − C) , (2)

where D − C ≥ 0. Let R = C
C +D denote a violation ratio for B(x)20% dominating B(x)10%.

Equation (2) can be accordingly rewritten as

R =
C

C +D
≤ ε1, (3)

where C = π
[
(1− P 10%)Q10% − (1− P 20%)Q20%

]
and D = (1− π)

[
P 10%Q10% − P 20%Q20%

]
.7

R can be calculated as long as we have π, P 10%, P 20%, Q10% , and Q20%.

Note that, in this paper, we extract the information of ε1 from the data on the 10%-

deductible contracts rather than the 20%-deductible contracts.8 Based on Equation (3) and

Theorem 1, if we observe an individual i with u ∈ U 2(ε1, 0) who prefers 10%-deductible contract

to 20%-deductible contract, then Ri should satisfy

Ri > ε1. (4)

We then use Condition (4) to obtain estimates of ε1.

4 Empirical Estimation

For all the policyholders in the sample to make an optimal choice on purchasing the 10%-

deductible contract, i.e., Condition (4) holds for all the policyholders in the sample, the mini-

mum of Ri would be an upper bound for ε1, i.e.,

min
i

Ri > ε1,

7The decision rule shown as Equation (3) is the same as that if B(x)20% dominates B(x)10% by ε1-AFSD
defined by Leshno and Levy (2002). We provide the formal proof as the proof of Result 1 in Appendix A.

8The same methodology could not be employed to estimate ε1 if we focus on the 20%-deductible contracts
instead. It is also shown in the proof of Result 2 in Appendix A that, (ε1, 0)-GASSD rule under which all
u ∈ U2(ε1, 0) prefer the 10%-deductible contract to the 20%-deductible contract is exactly SSD rule. Thus, we
could not infer ε1 from the sample in which policyholders purchased the 20%-deductible contract.
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where Ri denotes individual i’s R. Thus, an upper bound estimate of ε1 would be the minimum

of the estimates of Ri in the whole sample, i.e.,

R̂(100%) = min
i

R̂i,

where R̂(100%) denotes the upper bound estimate of ε1 when 100% of the policyholders in the

sample who purchased the 10%-deductible contract made an optimal decision on basis of (ε1,

0)-GASSD rule.

Note that typically, when the size of the sample gets larger and larger, we could push

R̂(100%) to become smaller and smaller. Therefore, R̂(100%) estimated with a large whole

sample would be expected to be close to zero and consistent with SD rules. On the other hand,

when assuming that only a certain percentage (say m%) of the policyholders in the sample

made an optimal decision according to (ε1, 0)-GASSD rule, which is called correct rate m%

based on (ε1, 0)-GASSD rule throughout the paper, R̂(m%) would be expected to be away

from zero and consistent with ASD rules.

On basis of the above observation, we propose the following quantile-based estimation for

the upper bound of ε1, which would provide more meaningful information for empirical practice.

Suppose that Ri > Rj . We know that if

Rj > ε1,

then

Ri > ε1.

In other words, given that Ri > Rj , if policyholder j made an optimal decision on purchasing

the 10%-deductible contract, then policyholder i would choose to purchase the 10%-deductible

one optimally. Thus, an m% upper bound estimate of ε1 is obtained as

R̂(m%) = min
i∈M

R̂i,

where M denotes the set of m% of the policyholders in the sample. R̂(m%) is the value of R̂
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at the (100-m)th percentile of the sample distribution conditional on all policyholders in the

sample who purchased the 10%-deductible contract. This is also an upper bound estimate of

ε1.

The estimation of ε1 requires the computation of R̂. To obtain R̂, we need the the probabil-

ity of theft π, the premium rates P 10% and P 20%, and the potential loss L for each policyholder.

Below we explain how we obtain these information from our data.

Using the sample of the 10%-deductible contract, we compute P 10% by the premium actually

paid by the policyholders divided by the coverage amount (i.e., the insured car value covered by

the contract). However, we do not observe P 20% for these policyholders. To obtain an estimate

of P 20%, we construct a generic premium rate by using the insurance company’s price schedule

denoted by P̂ 20%
i . According to this price schedule, the generic premium rate is a function of

characteristics of both the insured (e.g., age, gender, marital status, and claim record) and the

insured vehicle (e.g., age, brand, value).

Note that a policyholder may obtain a discount for his/her premium rate due to some

characteristics observed by the insurance company (or the insurance agent) but not available

in the data. To account for this, we compute the discount rate that the policyholder actually

obtained (di) by comparing his/her acutally-paid 10%-deductible premium rate P 10%
i with

the one generated by the insurance company’s price schedule (denoted by P̂ 10%
i ), i.e., di =

P 10%
i /P̂ 10%

i . Since di is irrelevant to the policyholder’s choice of contract, we can further

estimate a 20%-deductible premium rate for individual i adjusted by di (denoted by P̃ 20%
i ) as

follows.

P̃ 20%
i = di × P̂ 20%

i .

For the theft probability π, we estimate the probability for an insured vehicle to be stolen,

denoted by π̂, by the following probit model:

stoleni =





1 if xiβ + ei > 0,

0 otherwise,
(5)

where stoleni is a binary indicator of whether insured i’s vehicle was reported to the insurance
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company for being stolen, the error term ei is assumed to follow a standard univariate normal

distribution, xi is a vector of characteristics of insured i and his/her vehicle, and β is a vector

of parameters to be estimated. We then use the estimated coefficients β̂ to compute a predicted

theft probability of the insured car for policyholder i, denoted by π̂i. That is, π̂i = Φ(xiβ̂),

where Φ(·) is the standard normal cumulative distribution function.

According to the definition of R in Equation (3), our estimate of R for policyholder i is

obtained as

R̂i =
1

1 +

1− π̂i

π̂i

0.1
0.9P 10%

i − 0.8P̃ 20%
i

− 1

. (6)

For statistical inference, we obtain confidence intervals for R̂(m%) by bootstrap. To obtain

bootstrapped confidence intervals, we draw 1,000 bootstrapped samples. Each bootstrapped

sample is drawn from our original research sample with replacement (i.e., an observation in

the original sample may appear more than once in the bootstrapped sample) and is of the

same size. We obtain 1,000 bootstrapped R̂(m%) by using these 1,000 bootstrapped samples.

The upper and lower bounds of a bootstrapped 95% confidence interval are the values of these

bootstrapped R̂(m%) at the 2.5th and 97.5th percentiles, respectively.

5 Data

Our research data is obtained from one large non-life insurance company in Taiwan. Its market

share in automobile insurance market in Taiwan is over 20%. In addition to the compulsory

automobile liability insurance, several kinds of voluntary automobile insurance contracts are

sold in the market, such as: automobile liability insurance for bodily injury and property

damage, automobile insurance for car damage, and automobile theft insurance.

Among the above contracts, it is easier for policyholders with automobile theft insurance

to evaluate their final wealth distributions in the occurrence of automobile theft. First, au-

tomobile theft insurance contract possesses the characteristic of a valued contract. A valued

contract means that the claim amount paid by the insurer in the event of total loss is agreed
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upon between the insurer and the policyholder when the policy is sold. In other words, under

automobile theft insurance contract, the claim amount is a known constant. Furthermore, au-

tomobile theft insurance contract provides indemnity for only total theft loss but not for partial

theft loss. Due to these advantages, we focus on investigating automobile theft insurance.

We collect data on automobile theft insurance contracts sold during year 2002 to year

2008 with total 1,045,487 observations. There are two kinds of deductible level in the con-

tracts, 10%-deductible and 20% deductible. In the data, 93.5% of the policyholders who chose

10%-deductible contracts and only 6.5% of the policyholders who chose the 20%-deductible

contracts. As pointed out in the previous section that we infer ε1 by the policyholders who

purchased the 10%-deductible contract rather than the 20%-deductible contract, we exclude

the policyholders who purchased the 20%-deductible contract. After further excluding some

observations with missing information, we have a large research sample consisting of 940,904

observations.

From the data, we observe the individual level information for each insurance contract,

including demographic characteristics of the policyholder (gender, age, and marital status),

characteristics of the insured vehicles (market value when it was insured, age, engine size, size,

brand, whether it is registered in a city, and registered area), information regarding the contract

(premiums and issue year) and claim records during the contract period. All the definitions of

these information are provided in Appendix B.

As shown by Equation (6), when estimating ε1, for each policyholder in the sample of the

10%-deductible contract, we also estimate the premium rate of the 20%-deductible contract

by it in the tariff further adjusted for the discount rate. The estimated premium rate of the

20%-deductible contract and summary statistics of other variables are listed in Table 1.

[Insert Table 1 here]

As we can see, for those who actually purchased the 10%-deductible contract, the average

estimated premium rate if purchasing the 20%-deductible contract instead, is 0.0052, which

is smaller than the average paid premium rate in the 10%-deductible contract (0.0059). In

addition, the mean estimated theft probability is 0.0041. A lower mean estimated theft prob-

ability than the mean premium rate in the 10%-deductible contract suggests that the pricing

is adequate and pretty well controlled by the insurance company.
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6 Empirical Results

This section reports our empirical results. We show quantiles of the upper bound estimates of

ε1 in Table 2. Then, by a derived relation between ε1 and absolute risk aversion coefficient,

we further infer quantile-based upper bound estimates of the ARA coefficient based on the

obtained estimates of ε1, which are shown in Table 3.

Table 2 shows that if the decisions of all policyholders in the sample on purchasing the

10%-deductible contract are optimal, R̂(100%) = 8.198e−08, which is very small and close to

zero. The bootstrapped 95% confidence interval estimate is [2.29e−16, 0.00255], which indicates

that there is a 2.5% of chance that the upper bound estimate of ε1 at correct rate 100% is

beyond 0.00255 though. For the whole sample, our estimates of ε1 are close to zero and provide

evidence supporting that it could be reasonable to choose a zero ε1 for a large sample of risk

averters. Our estimates are much smaller than those obtained by previous studies. For example,

through lab experiments with 180 subjects, Levy et al. (2010) obtained an estimate of 0.059

for all subjects.9 By the real data consists of 940,904 observations, we obtained a much smaller

estimate for all policyholders (8.198e−08). This difference could be attributed to the property

of large sample that the obtained estimate gets smaller as the sample size increases, as noted

in Section 4.

[Insert Table 2 here]

A quantile-based estimation further sheds light on how slight violation against SD rules that

most individuals would accept. Table 2 presents that when 99% (97.5% and 95%, respectively)

of the policyholders in our sample purchased the 10%-deductible contract optimally, the upper

bound estimate of ε1 is 0.0399 (0.0554 and 0.0727, respectively) with a 95% confidence interval

estimate of [0.0298, 0.0463] ([0.0456, 0.0621] and [0.0635, 0.0791], respectively). The upper

bound estimate of ε1 becomes smaller as the percentage of the policyholders in the sample who

made an optimal decision gets higher. Compared with the literature, our estimate of 0.0554

at correct rate 97.5% is closest and slightly smaller than Levy et al.’s (2010) estimate of 0.059

at correct rate 100% while our estimate of 0.0727 at correct rate 95% is larger than that of

9From the survey data with 223 subjects, Huang et al. (2015) obtained an upper bound estimate of 0.0527
for all subjects which is slightly smaller than that in Levy et al. (2010).

13



Levy et al. (2010). Our quantile-based estimates of ε1 accordingly suggest reasonable violation

ratios against SD rules for most risk averters.

We can further infer an estimate of ARA coefficient for the policyholders at different correct

rates via our estimates of ε1. According to the definition of U2(ε1, 0), for all u ∈ U 2(ε1, 0), a

relation between the ARA coefficient and ε1 is derived as follows:

sup {u′(x)}

inf {u′(x)}
≤

1

ε1
− 1

⇔

∫ x̄

x

−
u′′(t)

u′(t)
dt ≤ ln

(
1

ε1
− 1

)

⇔

∫ x̄

x

−
u′′(t)

u′(t)
dt

x̄− x
≤

ln

(
1

ε1
− 1

)

x̄− x
. (7)

It is noted that

∫ x̄

x
−
u′′(t)
u′(t)

dt

x̄− x is the average ARA coefficient of the policyholder with his/her

final wealth within the interval [x, x̄]; thus, we could consider it as a measure of the degree

of the policyholder’s ARA. In addition, inequality (7) shows that
ln

(
1
ε1 − 1

)

x̄− x ≡ γ(ε1;L)

is an upper bound for the policyholder’s ARA coefficient, where in our setting, x̄ − x =
(
w − P 20%Q20%

)
−

(
w − L+

(
1− P 20%

)
Q20%

)
= 0.2L. Therefore, assuming that there are

m% of the policyholders in the sample who purchased the 10% deductible optimally, based on

our upper estimate of ε1 (i.e., R̂(m%)) in Table 2, we obtain the upper bound estimate of the

ARA coefficient for the policyholder denoted by γ̂(R̂(m%);L) is

γ̂(R̂(m%);L) =

ln

(
1

R̂(m%)
− 1

)

0.2L
. (8)

For an illustration, we take the mean insured car value of the sample (denoted by L̄), which is

NT$380,070, as the value of L. The results are shown in Table 3.

[Insert Table 3 here]

Table 3 shows that when all the policyholders in the sample purchased the 10% deductible

optimally, the policyholder with an insured car valued at NT$380,070 has an ARA coefficient

no larger than 0.0002 (i.e., γ̂(R̂(100%); L̄) = 0.0002). On basis of the bootstrapped interval
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estimate in Table 2 and Condition (8), we also obtain a 95% confidence interval estimate of

γ̂(R̂(100%); L̄) which is [7.827e−05, 0.0005]. Compared to the estimates shown in the literature,

e.g, Cohen and Einav (2007), our point estimate of 0.0002 at the mean insured car value is

smaller than Cohen and Einav’s (2007) mean estimate of 0.0067 but larger than their median

estimate of 2.6e−05.10 Our estimate is actually very close to and slightly smaller than their

75th percentile estimate of 0.00029. Both their estimates of median and the 75th percentile

are included in our 95% confidence interval estimate.

On the other hand, Table 3 shows that when 99% (97.5% and 95%, respectively) of the

policyholders in the sample purchased the 10% deductible optimally, the upper bound estimate

of ARA coefficient at the mean insured car value is 4.184e−05 (3.731e−05 and 3.349e−05, respec-

tively) with a 95% confidence interval estimate of [3.980e−05, 4.582e−05] ([3.572e−05, 4.001e−05]

and [3.229e−05, 3.540e−05], respectively]). The above results reveal that the upper bound es-

timate of ARA coefficient increases with the percentage of the optimal choice in the sample,

which can be seen from the negative relation between the estimates of ε1 and ARA coefficient

in Equation (8). Compared with Cohen and Einav’s (2007) results, all of our m% upper bound

estimates (m=99, 97.5, and 95) at the mean insured car value are smaller than their estimates

of mean and the 75th percentile (0.0067 and 0.00029, respectively); however, ours are close to

and rather larger than their median estimate of 2.6e−05. Our quantile-based estimates of ARA

coefficient are accordingly reasonable and comparable to previous works.

7 Conclusions

In this paper, we estimate an upper bound for ε1 in (ε1,0)-GASSD with the data on 10%-

deductible contract of automobile theft insurance. We propose a quantile-based methodology

for empirical estimation. Our estimates of ε1 obtained from real data are smaller than previous

findings obtained by experiments, but ours are closer to reality and provide more meaningful

information for empirical applications of ASD rules. Based on the estimates of ε1, we further

infer an upper bound for ARA coefficient. Our estimates of the ARA coefficient are not only

comparable to the previous findings but also linked to ASD decision rules.

10By the similar data on deductible choices in automobile insurance, Cohen and Einav (2007) directly esti-
mated the ARA coefficient and reported the quantiles of the estimate while we obtain our estimates via the
estimates of the acceptable violation ratio against SD rules.
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For future research, it would be interesting to investigate heterogeneities in our estimates

of ε1. Our results are preliminary research implemented with real data on the value of the

acceptable violation ratio against SD rules. However, it is unknown that whether the upper

bound estimate of ε1 varies with characteristics of the policyholder or the insured car. It

therefore could be a complement to the literature on ASD to empirically examine this issue.
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Appendices

A Equivalent Conditions for (ε1,0)-GASSD in (1) B(x)20%

dominating B(x)10% and (2) B(x)10% dominating B(x)20%

In this section, based on Figure 1, we show equivalent conditions for B(x)20% dominating

B(x)10% by (ε1,0)-GASSD and B(x)10% dominating B(x)20% by (ε1,0)-GASSD, respectively.

Result 1: (ε1,0)-GASSD and ε1-AFSD require the same condition for B(x)20% dominating

B(x)10%.

Proof: B(x)20% dominates B(x)10% by ε1-AFSD (Leshno and Levy, 2002) is defined as:

Definition A1 For 0 < ε1 <
1
2
, B(x)20% dominates B(x)10% by ε1-almost FSD if and only if

∫

S1

[
B(x)20% − B(x)10%

]
dx ≤ ε ‖ B(x)20% −B(x)10% ‖ ,

where S1 =
{
x ∈

[
w − L+ (1− P 20%)Q20%, w − P 20%Q20%

]
: B(x)10% < B(x)20%

}
and ‖ B(x)20%−

B(x)10% ‖=
∫ w−P 20%Q20%

w−L+(1−P 20%)Q20% | B(x)20% − B(x)10% | dx.

According to Definition A1, the condition for B(x)20% to dominate B(x)10% by ε1-AFSD is

R20%≻10%
AFSD =

C

C +D
≤ ε1, (A1)

which happens to be the same as Condition (3) for B(x)20% dominating B(x)10% by (ε1,0)-

GASSD.

Q.E.D

Result 2: (ε1,0)-GASSD is equivalent to SSD for B(x)10% dominating B(x)20%.

Proof: According to Definition 1, B(x)10% dominants B(x)20% by (ε1,0)-GASSD for all u ∈

U 2(ε1, 0) if and only if B(2)(w − P 20%Q20%)10% − B(2)(w − P 20%Q20%)20% ≤ 0 and

max
x∈[w−L+(1−P 20%)Q20%,w−P 20%Q20%]

[
B(2)(x)10% −B(2)(x)20%

]

≤
ε1

1− 2ε1

[
B(2)(w − P 20%Q20%)20% − B(2)(w − P 20%Q20%)10%

]
. (A2)
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B(2)(w − P 20%Q20%)10% − B(2)(w − P 20%Q20%)20% ≤ 0, which means that D − C ≤ 0.

Accordingly, max
x∈[w−L+(1−P 20%)Q20%,w−P 20%Q20%]

[
B(2)(x)10% −B(2)(x)20%

]
= 0 and Equation (A2)

is rewritten as

0 ≤
ε1

1− 2ε1
(C −D) ⇔ ε1 ≥ 0, (A3)

where 1− 2ε1 ≥ 0 and C −D ≥ 0. In other words, B(x)10% dominants B(x)20% by SSD.

Q.E.D

B Variable Definitions

We describe part of the variables defined in this paper as follows:

• Age—The age of the policyholder (vehicle owner).

• Female—A dummy variable equals 1 when the insured is female.

• Marriage—A dummy variable equals 1 when the insured was in marital status.

• Car age—The age of the vehicle when it was insured, and four dummy variables further

indicate the class of the insured vehicle’s age from age 0 to age 4 (denoted by Car age 0,

Car age 1, Car age 2, Car age 3, and Car age 4 ).

• Engine size—The volume of engine which is measured in cubic centimeters (cc).

• Size—Two dummy variables indicate the class of the engine size of the insured vehicle,

including the size between 1,800 c.c. and 3,000 c.c. (denoted by Median size) and greater

than 3,000 c.c. (denoted by Large size).

• Brand—13 dummy variables indicate brands of vehicles sold in Taiwan, which are denoted

by Nissan, Ford, Honda, Toyota, Mitsubishi, Mazda, French, VW (Volkswagen), Korean

(some Korean brands), British (some British brands), US (some other US brands), Lux-

ury (some Luxury brands), OJapan (some old Japanese brands), respectively.

• City—A dummy variable equals 1 when the insured vehicle was registered in a city.
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• Area—Three dummy variables indicate the insured vehicle’s registered area in Taiwan,

including the North (denoted by Northern), the South (denoted by Southern), and the

midland (denoted by Central).

• Policy year—Six dummy variables indicate the year in which the policy was issued from

year 2002 to year 2007 (denoted by 2002, 2003, 2004, 2005, 2006, and 2007 ).
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Figure 1: Cumulative Distribuion Functions under 10%-Deductible and 20%-Deductible Insur-
ance Contracts
Notes: This figure presents the cumulative distribution functions (CDFs) of the final wealth x under a 10%-
deductible insurance contract, denoted by B(x)10%, and a 20%-deductible insurance contract, denoted by
B(x)20%. The solid line draws B(x)10% and the dotted line draws B(x)20%. A risk-averse individual with an
initial wealth w and a potential loss L with a probability of occurrence π considers which levels of insurance
deductibles to purchase to transfer the risk by ranking B(x)10% and B(x)20%. P k denotes the premium rate
for per unit of coverage amount and Qk denotes the coverage amount in the 10%-or 20%-deductible contract,
where k = 10% or 20%. Under the 10%-deductible contract, the individual obtains w − L + (1 − P 10%)Q10%

with probability π and w − P 10%Q10% with probability with 1 − π. Under the 20%-deductible contract, the
individual obtains w−L+ (1−P 20%)Q20% with probability π and w−P 20%Q20% with probability with 1− π.
In general, (1−P 10%)Q10% > (1−P 20%)Q20%. C denotes the area where B(x)20% is higher than B(x)10% and
D denotes the area where B(x)10% is higher than B(x)20%.
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Table 1: SUMMARY STATISTICS—COVARIATES

Variable Mean Std. dev. Min Max

Premium rate:a 0.0059 0.0017 3.81E-07 0.0150

Estimated premium rate:b 0.0052 0.0015 3.38E-07 0.0133

(if choosing 20%-deductible contract instead)

Estimated theft rate: 0.0041 0.0034 5.90E-10 0.0476

Demographics: Age 42.5027 9.8939 18 93

Female 0.6297 0.4829 0 1

Marriage 0.8986 0.3019 0 1

Car attributes: Value (NTD)c 3.8007 3.4045 0.0100 99.8000

Car age (Interval) 3.5035 2.8220 0 89

Car age (Dummy) Car age 0 0.1218 0.3270 0 1

Car age 1 0.1748 0.3798 0 1

Car age 2 0.1524 0.3594 0 1

Car age 3 0.1312 0.3376 0 1

Car age 4d 0.0986 0.2981 0 1

Engine size (cc)e 1.9126 0.4665 0.0030 22.1630

Sizef Median size 0.3434 0.4748 0 1

Large size 0.1533 0.3603 0 1

Note: This table reports summary statistics of variables used in empirical estimation, which are obtained with

our full sample which consists of policyholders who purchased the 10%-deductible automobile theft insurance

contract.

a Premium rate is calculated for each policyholder in the 10%-deductible sample by the premiums actually paid

divided by the coverage amount.

b Estimated premium rate is the premium rate estimated for each policyholder in the 10%-deductible sample if

choosing 20%-deductible contract instead.

c Value is measured in the unit of one hundred thousand NT dollars.

d The insured cars that are over than 4 years are the reference group.

e Engine size is measured in the unit of one thousand cubic capacity (cc).

f Small size which represents the insured cars with the engine size less than 1,800 c.c., are the reference group.
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Table 1: SUMMARY STATISTICS—COVARIATES (Continued)

Variable Mean Std. dev. Min Max

Car attributes: Brandg Nissan 0.1237 0.3293 0 1

Ford 0.1058 0.3075 0 1

Honda 0.0661 0.2484 0 1

Toyota 0.4025 0.4904 0 1

Mitsubishi 0.0825 0.2751 0 1

Mazda 0.0419 0.2004 0 1

French 0.0079 0.0883 0 1

VW 0.0349 0.1834 0 1

Korean 0.0338 0.1806 0 1

British 0.0011 0.0331 0 1

US 0.0111 0.1048 0 1

Luxury 0.0628 0.2427 0 1

OJapan 0.0203 0.1409 0 1

Registered: City 0.5231 0.4995 0 1

Areah Northern 0.4995 0.5000 0 1

Southern 0.2714 0.4447 0 1

Central 0.1715 0.3770 0 1

Policy year:i 2002 0.1189 0.3236 0 1

2003 0.1301 0.3364 0 1

2004 0.1456 0.3527 0 1

2005 0.1555 0.3624 0 1

2006 0.1323 0.3388 0 1

2007 0.1632 0.3696 0 1

Obs. 940,904

g The insured cars with brands not belonging to the above ones are the refer-

ence group.

h The insured cars registered in eastern part of Taiwan are the reference group.

i Polices sold in year 2008 are the reference group.
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Table 2: Upper Bound Estimates of ε1

Correct Rate Point Estimate Bootstrapped
m%a (R̂(m%))b 95% Confidence Interval Estimatec

100% 8.198e−08 2.29e−16, 0.0026
99% 0.0399 0.0298, 0.0463

97.5% 0.0554 0.0456, 0.0621
95% 0.0727 0.0635, 0.0791

Obs. 940,904

Comparable Estimates at Correct Rate 100%:
Levy et al. (2010) (180 Obs.) 0.059 N.A.

Huang et al. (2015) (223 Obs.) 0.0527 N.A.

Note: This table reports upper bound point estimate of ε1 (i.e., R̂) and bootstrapped 95% confidence interval
estimate of ε1 at correct rates 100%, 99%, 97.5%, and 95%, respectively, obtained with our full sample of the
10%-deductible automobile theft insurance contract.

a Assume that m% of the policyholders in the full sample made an optimal decision on purchasing the 10%-
deductible automobile theft insurance contract based on (ε1, 0)-GASSD rule.

b An upper bound estimate of ε1 at correct rate m% is denoted by R̂(m%). It is a quantile-based upper bound

estimate of ε1 which denotes the (100−m)th percentile of the empirical distribution of R̂.
c The 95% confidence interval estimate is constructed by bootstrap. 1,000 bootstrapped samples with an

equal size were drawn from the original research sample with replacement. The lower and upper bounds of
bootstrapped 95% confidence interval of R̂ are the 2.5th and 97.5th percentiles, respectively, of the empirical
distribution of R̂ obtained by the 1,000 bootstrapped samples.
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Table 3: Upper Bound Estimates of Absolute Risk Aversion Coefficient at The Mean Insured
Car Value NT$380,070

Correct Rate Point Estimate
m%a γ̂(R̂(m%); L̄)b 95% Confidence Interval Estimatec

100% 0.0002 7.827e−05, 0.0005
99% 4.184e−05 3.980e−05, 4.582e−05

97.5% 3.731e−05 3.572e−05, 4.001e−05

95% 3.349e−05 3.229e−05, 3.540e−05

Obs. 940,904

Comparable Estimates (Cohen and Einav, 2007):
Mean 0.0067 N.A.

Median 2.6e−05 N.A.
75th Percentile 0.00029 N.A.

Note: This table reports upper bound estimates of absolute risk aversion (ARA) coefficient for the policyholder
with an insured car valued at the mean of the sample (NT$380,070) at correct rates 100%, 99%, 97.5%, and
95%, respectively, obtained on basis of the upper bound estimates of ε1 in Table 2.

a Assume that m% of the policyholders in the sample made an optimal decision on purchasing the 10%-deductible
automobile theft insurance contract based on (ε1, 0)-GASSD rule.

b The upper bound point estimate of the ARA coefficient is estimated by the derived relation that

∫ x̄

x
−
u′′(t)
u′(t)

dt

x̄− x ≤

ln
(
1
ε − 1

)

x̄− x , where x̄− x = 0.2L. Let the mean insured car value (L̄) as the value of L. Accordingly, we obtain

the upper bound point estimate of the ARA coefficient at correct rate m% and the mean insured car value

denoted by γ̂(R̂(m%); L̄) is

ln

(
1

R̂(m%)
− 1

)

0.2L̄
, where L̄ = 380, 070. It is also a quantile-based upper bound

estimate of the ARA coefficient at the mean insured car value which denotes the (100 −m)th percentile of the

empirical distribution of γ̂(R̂(m%); L̄).
c The 95% confidence interval estimate is estimated by the same derived relation on basis of the bootstrapped 95%

confidence interval estimates in Table 2. The lower and upper bounds of 95% confidence interval of γ̂(R̂(m%); L̄)

are the 2.5th and 97.5th percentiles, respectively, of the empirical distribution of γ̂(R̂(m%); L̄).
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